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Rollers-a new type of defect in dipoled polymer chains 

D R M Williamst 
Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 OHE. 
U K  

Received 11 March 1991, i n  final form 16 May 1991 

Abstr8cl. We present a new defect which can occur in dipoled warm-like polymer chains 
in the presence of an electric held. These defects. ‘rollers’, are small loops in the chain 
and represent solutionsofthe equationsofmechanical equilibrium. They arc thusanalogous 
to de Gennes’ hairpins i n  nematic chains. The statics of rollers is studied for a dipoled 
chain which may also have a nematic component to its potential. The one-dimensional 
ideal gas model of roller thermodynamics is presented briefly. It is shown that rollers are 
unstable and that the dynamics o f  a single roller in the linear regime will be for i t  to roll 
diffusively off the end of a chain. Other possible dynamical regimes are briefly discussed 
as is the dynamics of n rollers on a single chain. 

1. Introduction 

In this paper we introduce a new type of molecular defect which can occur in a dipoled 
polymer chain. Such a chain consists of a series of electric dipoles (possibly separated 
by spacing monomers), all pointing in the same sense along the chain backbone, as 
in figure 1. Such dipoled chains have been suggested as possible nonlinear optical 
materials [1,2], in the case where they also possess nematic liquid crystal monomers 
in the backbone. The effect of dipoles upon liquid crystalline ordering has also been 
studied in [3-51. 

The statics, dynamics, and thermodynamics of main chain nematic liquid crystalline 
polymers has been the subject of much recent study [6-111, both because these materials 
are technologically important and because the understanding of their rheology presents 
an interesting challenge. A molecule of such a material consists of a series of nematic 
monomers separated by inactive spacers. Such chains are often modelled as being ---- 

U 
Figure 1. A representation of a dipoled chain. The chain can bend but it cannot stretch. 
It is thus worm-like. Non-dipolar spacers may be put in between the dipoles Io allow more 
flexibilily. 

~ 
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inextensible worms, that is, they conserve length locally and are unable to stretch at 
all. However, they may bend, although there is an energy penalty for doing so. An 
energy penalty is also paid for swimming across the nematic field. If we represent the 
spatial trajectory of a given chain of length L, in two dimensions, by the angle its 
tangent makes with the nematic director, S(s), then its energy is given by: 

U [ S ( s ) ]  =; ds[~(S(s)”+3a.S sin2 S(s)]. ( 1 )  lo‘ 
Here S is the order parameter (PJcos S(s)]) (where the average is taken over all chains 
for all values of s) and E and a are the elastic bend and nematic mean field coupling 
constants respectively. The first term represents the bending energy, and the second 
the nematic energy. One important fact needs to be noted about the nematic term-it 
is of the form P,(cos 0) and thus does not distinguish up from down. The nematic 
field only forces the molecule to lie locally parallel to a particular line. 

The obvious configuration for a polymer molecule to have in order to minimize its 
energy is for it to lie entirely along the nematic direction. As the temperature is increased 
there will be many small excursions S(s) # 0 away from the director. If the worm is 
flexible enough de Gennes [I21 has suggested it will undergo rapid reversals in direction 
to form hairpins (see figure 2) .  The energetic cost of a hairpin is counter-balanced by 
the entropy of where it can be placed along the chain’s length. Such defects drastically 
affect chain dimensions (the first one halves the dimension of the chain along the 
director) and are predicted to have a significant influence on the dielectric response [I] .  

Figure 2. A hairpin in a nematic main-chain polymer liquid crystal. A h  is the hairpin length, 
and gives an indication of the size of the bend. The direction of the director is shown 
by 6. 

In order to obtain the hairpin trajectories de Gennes used as an  Euler-Lagrange 
‘minimization’ of the energy given in equation (1). The equation of mechanical 
equilibrium obtained is 

d‘O(s) 
d s  

~ ~ = 3 a S s i n ~ ( s ) c o s S ( s )  

The free ends of the polymer imply that the appropriate boundary conditions are 
dS(s)/ds = 0 at both ends of the worm. This is simply a pendulum type equation and 
the solutions can thus be expected to be elliptic functions [2]. However for an infinitely 
long chain, with s E (-a, m), the solution is much simpler, being 

tan ( y )  = exp( i) ( 3 )  
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with a minimum energy (the 'hairpin energy') of 

U,  = 2 m  (4) 

and a 'hairpin length' of 

A h = & .  ( 5 )  

From (3 )  it is clear that A h  represents the length scale upon which the chain bends. 
One very important fact which arises from (3) is that the influence of the hairpin 

solution dies away exponentially with distance from the bend. Thus parts of the chain 
which are more than a few hairpin lengths from the bend are very well aligned along 
the director and do not sense that there is a hairpin in the chain. 

The hairpin solution obtained here represents a balance between the nematic energy 
which forces the chain to turn as rapidly as possible (thus avoiding swimming against 
the nematic field for long) and the bending energy which is minimized for a bend 
which is as slow as possible. This balance is clearly seen in the length and energy 
scales ( 5 )  and (4). 

We can now ask what the effect is of putting dipoles along a nematic chain and 
applying an electric field to the system. This was done in a perturbative way in [ l ]  
and [2], where the effect was manifested as a biasing of hairpin arm lengths. Here we 
are interested in changes to the solutions of the equations of mechanical equilibrium. 

From a symmetry point of view a dipoled chain is clearly different from a nematic 
chain. The latter has no sense of up and down, whereas the former can sense the 
direction of the electric field. The dipoles couple the chain to a P,(cos 8 )  field. In 
section 2 we shall show that this difference leads to the creation of new kinds of defects 
in dipoled chains. in keeping with d e  Gennes' hairdressing terminoiogy we have 
christened these defects 'rollers'. Like hairpins, rollers represent a balance between 
the bending energy of the chain and the energy of the chain in the surrounding field. 
Section 2 looks at the statics of rollers in an infinitely long chain. The effect of the 
dipoles is treated in full-not as a perturbation (as was done in [l]) .  The chain 
considered has both a nematic and a dipole component to the energy and thus one 
UVLalllD , ,a,,p,-,,Ix " S l G i c L I  as ws11 as I U L I C I S .  

are examined. The thermodynamics, which are similar to those for hairpins are briefly 
discussed in section 4. In section 5 it is shown that a single roller on a finite chain is 
unstable. If the temperature is low enough that only linear modes of the chain need 
to be accounted for then the most likely dynamics for the destruction of a single roller 
is shown to be simple diffusion along the chain, followed by unwinding at the chain 
end. At higher temperatures the dynamics of roller destruction prove more complicated. 

-L.-:-- L-:-..:.. I:,.- 2 ° C  ̂ ^.^ ^ ^  ...-,, ^ ^  --,ne-- T.. ^^^. :-.. 1 .L^ ^.^. :-- r-_ ~ c..:.- -L-:- 
111 D S C L I U I I  , LllC S L L L L L I  ,U, a l l l l l l C  C l l a l l ,  

2. Statics for the infinite chain 

In order to study the dynamics and thermodynamics of the dipoled PLC it is first 
necessary to understand the statics. By statics we mean the solutions of the equations 
of mechanical equilibrium for an isolated chain. The model adopted here for a dipoled 
chain is as simple as possible. We consider each chain separately, the only interaction 
with other chains being through the mean field nematic potential. The chains are 
infinitely thin and have no excluded volume interaction with themselves or with other 
chains. The electric field seen by each chain is assumed to be spatially constant. 
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Screening of the field by other chains is allowed provided its only effect is to change 
the constant E field. Even with this simple model the statics of nematic dipoled chains 
is complicated and will be seen to contain a rich variety of species. 

We represent a polymer chain of length L by the angle it makes with the x axis 
0(s) and the azimuthal angle +(s) .  Here s is the arc length as measured from one end 
of the chain. This coordinate system guarantees that the chain cannot stretch. If  we 
let ’ mean d /ds  then the energy functional of a given single chain is made up of three 
terms: 

( 6 )  

The first term represents the bending term and E is the bending constant. The 
second term is the nematic contribution. This comes from the interactions of a single 
monomer at  position s with monomers on surrounding chains and monomers on the 
given chain. The final term represents the contribution from the backbone electric 
dipoles. Here K = uE where Y is the dipole moment per unit length along the chain. 
We have assumed for simplicity that the nematic director points along the x axis, as 
does the electric field. This is obviously the lowest energy choice. The chain thus pays 
an energy penalty for bending, for swimming across the nematic direction and for 
running against the electric field. It is important to note that the nematic field is a P2 
field whereas the electric field is a P, field. Thus the latter has a polarity and the former 
does not. It is this fact which makes hairpins and rollers very different objects. In order 
to find the mechanical equilibrium configurations one can carry out Euler-Lagrange 
‘minimization’ on (6) or, which amounts to the same thing, one can add small 
perturbations to S(s) and +(s) and demand that they vanish to first order. This yields 
two coupled nonlinear differential equations for 0,(s) and &,(s): 

and 

d 
-(+~(s)s in’e , (s))=o.  
ds  

The boundary conditions for a chain with free ends may be written as Sb(s )=O and 
sin2 @,(s)&(s) =0, at both ends of the chain. Applying the second of these to (8) 
immediately gives the result that sin2 O,(s)@&(s) = O  along the whole length of the 
chain. This implies that either &(s) is constant or S,(s) = O  or 71. The latter possibility 
indeed is consistent with (7) and the first boundary condition, but is a very trivial 
solution because once S,(s) = 0 or the chain is aligned along the nematic director 
and &(s)  becomes irrelevant and may as well be set equal to a constant. Thus all the 
geometrically meaningful solutions of (7) and (8) have &(s)  constant. This is a more 
formal proof of a result which was argued as being physically obvious in [2], namely 
that (at least for the purposes of statics) hairpins are the only kind of defects that can 
occur in non-dipoled PLG. That is, the 0 coordinate is the only one which needs to 
be studied, and the 4 coordinate introduces no new exotic solutions of the equilibrium 
eauations. 
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We have thus simplified the solution of the equilibrium problem to solving the 
equation: 

(9) 
1 

2 A h  
%b(s)=,[sin2%,(s)+2R2sin O,(s)] 

which is equation (2) of [2] with a dipole term added to the right-hand side. Here we 
use two lengths, the hairpin length A h  previously defined in the introduction, and the 
roller length A c  given by 

It is also useful to define the ratio of the hairpin to the roller length R = Ah/hr. As for 
the case of a chain with only a nematic field present it is much simpler [12,2] to first 
study the statics of a chain of infinite length. Looking at the case R<< 1 the solution 
of (9) is: 

This is the infinite hairpin solution of de Gennes. The opposite extreme is when the 
electric field dominates the nematic field so that K = vE >> 3aS and thus R >> 1. The 
solution is then superficially very similar t o  the hairpin case, being: 

~ ( s )  = 4  tan-’ exp s E (-m, m). (12) 

T h e  trajectory in real space is shown in figure (3) and is very different from a hairpin. 
The fact that the electric field is a P, field implies that the chain cannot merely bend 
but must roll over and eventually follow the same direction it started in. We have 
called the defect which forms, a ’roller’. Just as the hairpin length gives an estimate 
of the size of the bend in the hairpin, the roller length provides a rough indication of 
the ‘radius’ of the loop in a roller. One fact concerning rollers is immediately obvious- 
they will not in general reduce the chain dimensions by a significant amount, unless 
there is a large density of them along the chain or the roller length is very large. 

To study the intermediate R regime in an infinite (or indeed a finite) chain we note 
that the problem may be mapped onto a much more familiar and intuitively clear one 
of a single Newtonian particle of unit mass moving in a potential in one dimension. 
If % is the position of the particle along the x axis and s is time then the potential for 
the particle is: 

This may be seen from the differential equation (9). The fact that the chain is infinite 

E -  

o 
Figure 3. The approximate trajectory of a roller on B long dipoled chain. The direction of 
the dipoles along the chain is represented by arrows. Apart lrom the roller section the 
chain spends m m  of its length pointing along the field direction. 
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means that the particle must take an infinite amount of time to complete its trajectory 
and thus the particle must finish at a maximum in the potential. 

For the infinite chain there are three possible cases of interest. These are shown in 
figures (4) to (6). The first is R = O  (figure 4). I n  this case the electric field is zero and 
one is left with only the hairpin solutions. There are two types of hairpin solutions 
shown in this figure. These are of course equivalent energetically as they have the same 
lengths against the field and along the direction of the field. A more interesting case 
is where O <  I? < i (figure 5) .  Again there are two hairpin-type soiutions which are oi 
equal energy. However, these do not have arms of equal length. Because the potential 
for the particle is much steeper for the region of the trajectory along the direction of 
the electric field the chain travels most of its length against the field. In fact it spends 
an infinite amount of time in the 0 = P direction. There is also a roller solution in 
which the chain travels along the electric field direction for most of its length, with a 

because the bump which the particle must travel over at 0 = n decreases relative to 
the original energy of the particle. Eventually the bump disappears entirely and for 
R > 1 only the roller solution exists (figure 6). 

sma;; loop in !he As the of 'q is  increased the size of this ioop shrinks 

c 

Figure 4. The infinite chain trajectories in the case of zero electric field so that R = 0. The 
graph s h o w  the potential felt by the 'ghost' panicle whose trajectory in time is the same 
as the chain's trajectory in space. Here B i s  the coordinate describing the particle's position, 
which corresponds to the angle made by the chain with the field axis. The two possible 
hairpin solutions are also shown, as are the corresponding points of the potential and the 
space curvcs. Note that the chains extended to infinity in the C and A and the C and E 
directions respectively. 

One can obtain explicit expressions for the solutions just discussed. The hairpin 
type solutions are: 

and the roller solutions are: 

S E  (-CO, CO) R>O. (15) 
4(1+R2) 

R2cosh(  A h  ) + R 2 + 2  
2 s m  

i-cos s(s)= 



Rollers in dipoled chains 4433 

Figure 5. The infinite chain trajectories in the case of Oc R <  1. There are two possible 
hairpin-like solutions D-E-B and B-G-H. Note that these solutions spend most (an infinite 
amount) of their time pointing against the held, and because near D and H the potential 
is not Rat the chains spend very little time pointing along the field. The roller solution is 
also shown. T h i s  solution has a reasonably low energy because most of the chain points 
along the field direction. 

U 

e 

i -  
E 

. , . . 
A C 

Figure 6. The infinite chain lrajectories for the case of R >  1. There is no longer a double 
well in the potential and hence there are no hairpin solutions. The only available solution 
is the i d l e i  shown above 

It is not difficult to show that (15) reduces'to the roller solution (12) in  the limit R B  1. 
To show that (14) reduces to (11) in the limit R + O  one first needs to translate 
coordinates so that the point where cos 8 = 0 lies at the origin. 
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, I , . . . \ 

Figure 7. The infinite 'hairpin' trajectory far lIa< R < 1. There is no point where B = ~ 1 2  
and the chain spends most of its length i n  the high energy configuration pointing against 
the field and is hence always on one side o f  the defect. The shape represents a subtle 
balance between the various energy terms. To first order the bent part of  the chain would 
like to unbend an hence pay less bending and nematic penalty. However, in doing so it 
would pay an equal dipolar energy penalty. 

Using the solution (14) or the particle potential (13) it is easy to show that for 
l / d ? < R <  1 there is no place on the hairpin solution where the chain is actually at 
right angles to the nematic director. In this range of R the chain thus looks something 
like figure 7 and it is not clear that the term hairpin is appropriate. 

There are also a few trivial solutions to the mechanical equilibrium equations. 
These are: 

e(s) = o R a O  s E (-00, 00) 

e(s) = 71 R 3 0  s E (-00, m) 

and 
cos S(s) = - R 2  O G R S 1  sE( -m,m) .  

In the zero electric field ( R  =O) case the first two of these are the 'ground' state 
solutions whereas the latter is of very high energy per unit length because it maximizes 
the nematic energy. 

3. Statics for the finite chain 

The statics for the case of a finite length dipoled chain in the presence of a nematic 
field is much more complicated than the infinite case. In general there are a large 
number of exotic solutions. The reason for this can be seen by using the classical 
particle analogy. For a particle in the given potential (such as figure 8)  the only 
conditions that it must obey in order produce a viable chain trajectory is that it is 
stationary at both ends of its time trajectory and takes a given amount of time to 
complete the trajectory. Thus given a certain amount of time or chain length the particle 

Figure 8. A possible situation for the panicle potential. Trajectories E-  F. A +  B and C-1 D 
mighr all take the small amount oftimc thus allowing for several different kinds afstationary 
solutions on a given length of  chain. 
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may complete oscillation A +  B or C + D or even E + F. These trajectories may all take 
the time to complete and are thus possible chain trajectories. Here we avoid the 
derivation of the solutions to (9) and merely present them. We divide the solutions 
into three kinds. To find solution (A) we first need to solve 

for the parameter k used in elliptic function theory [13]. Here p is an integer. We then 
calculate: 

and 

k 
g=-' 

(19) 

These allow the actual trajectory to be calculated as (for s E (0, L ) )  

COS e(s) = x ( ~ )  = 1 - 1 + 2 R ' - ~ ~ ( x , + 2 R ~ )  ( 2 1 )  
1 + xo+ 2R'-  2(x,+ R 2 )  sn2(s/( Ahg). k) '  

The first thing that should be noted about this solution is that it never has a point 
where 0 = a and is hence a hairpin-iike soiution rather than a roiier soiurion. T i e  
integer p may be varied to give different solutions as could the hairpin number n in  
[2]. However, there are a limited number of solutions because the right-hand side of 
( 1 8 )  is always *T/&?, This solution is also only valid for R < 1. 

The solution of type (B) may be found b y  solving: 

L 
K ( k ) = -  

2nhhh 

for k where n is an integer, h is given by 

1 
h =  JXGG 

and we use 

xo= - l - R 2 + 2 k ' + J R 4 - 4 k 2 + 4 k 4 .  (24) 

The trajectory is: 

cos s ( s ) = X ( S ) = - * "  i 

These solutions are valid for R > 0. If 1 < R < 2 then for a given n in (22 )  there are 
two solutions for k,  whereas for R >. 2 there is only one k solution, and hence one 
trajectory. 
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Figure 9. All the possible equilibrium solutions on a chain of length 25 with A h  = 1.3 and 
A - =  2.6 and hence R = A h J A ,  < 1. Note that the hairpins spend most of their length against 
the field whereas the rollers follow the field. The solutions ( / I  and ( 9 )  are interesting in 
that they represent an intermediate stage between a hairpin and a roller. They are the chain 
representatives of particles which just make i t  over the bump (B) in figure 5. 

id 
E -  - 

Figure IO. All the possible equilibrium solutions O n  a chain of length 25 with A h  = 1.3 and 
A s =  1.1 and hence 1 c R =Ah/A,<2.The n o n - r o l l e r ~ ~ I u t i o n ~  (/)and (g) which have high 
dipolar energy are the chain representatives of  the particle wallowing in the bottom of  the 
well in figure 6. 
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w E -  

Figure ll. All the possible equilibrium solutions on a chain of length 12 with A h  =0.6 and 
A , =  1.1 and hence R = A , / A , > 2 .  Only the roller solutions remain. Solution (e)  is a very 
degenerate form of roller which has not turned in on itself. It spends much of its length 
either perpendicular or against the electric field. 

To obtain the final type of solution (type ( C ) )  one proceeds as in type (B) but with 

x,= -1 - R 2 + 2 k 2 - J R 4 - 4 k 2 + 4 k 4 .  (26 )  

here there is nnlv one 

solution. Plots of the various solutions for the cases R < I ,  1 < R < 2  and R < 2 are 
shown in figures 9, IO and 11 respectively. 

In passing we should note that for more than one roller on a chain the exact 
equilibrium solutions require the rollers to be placed on opposite sides of the chain 
in a zig-zag style (as in figure 11( c)). However, it is clear that there are many energetically 
close arrangements possible (which are quasi-equilibrium solutions) in which the rollers 
make arbitrary angles with the x axis. These arrangements can transform into each 
other rapidly because of the very small size of rollers and the small energy differences 
between the configurations. 

(24)  replaced by 

This sn!u!inn is nnly ...!id fer p. < 1,  For every y*!=c of -...> -'._ 

4. Thermodynamics of rollers 

It should be clear from the previous section that the equilibrium shapes of rollers on 
a finite sized chain can be very complicated. In this section we shall restrict our attention 
to a chain where R >> 1 so the nematic component is unimportant. We also only examine 
the case L >> A,, so that the shape of the rollers can be approximated by the infinite 
roller solution (12). To study the thermodynamics of a system of such rollers we first 
examine a single roller on an infinite chain. When computing the energy of this system 
there is an immediate minor problem. Upon substitution of (12) into (6) we find 

U = J-: ds[  ?sech2(:) - K ]  = --Km. 

The quantity we are really interested in is the difference between the ground state of 
0 = 0 and a single roller. This is just the first term above and is equal to the roller energy: 

It is clear from (12) and by analogy with the case of hairpins that rollers on a single 
chain interact with each other via a potential which decreases exponentially with 
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distance on a length scale A . .  Thus, as was done in [ l ]  we may model a chain with n 
rollers as a one-dimensional ideal gas and carry many of the results across directly. 
Thus, in particular, the probability of finding n rollers on a chain of length L.is 
given by 

(29) 
r: 

Pcq(n)=exp(-rr)-  . n !  

where 

L 
1',=exp(- UJk.7)- (30) 

1, 

and I ,  will be given by 

(31) 

Here a is a constant numerical factor which needs to be calculated using the approach 
of [7]. The average number of rollers is 

w = r , .  (32) 

As noted previously the presence of rollers is unlikely to have any large effect upon 
the dimensions of a chain. They do  however have one slight advantage over hairpins 
in reducing chain dimensions for every one of them produces a proportional reduction 
in chain length, whereas for the hairpin case the hairpins perform a random walk and 
do not cooperatively reduce the chain length. For a chain of arc length Lo .which 
is stretched out along the electric field direction the presence of rollers reduces its 
length by: 

P u r  

a k,T 6a kBT 
exp(-UJkBT)=-- Lo -~ P WOK 

(33) 

where = 1 .  Thus unless Uc= k,T the chain length is not greatly affected. If we chose 
U,=k,T then the chain length could be reduced dramatically but in such a regime 
the rollers would be tightly packed and would interact strongly. The assumption of 
treating them as an ideal gas would then be invalid. 

5. Roller stability and dynamics 

We finish our study of rollers with a brief discussion of their dynamics. In fact to study 
the dynamics properly we would like to know whether rollers are stable and what the 
eigenmodes look like if they are unstable. This question can be answered for a single 
roller on a finite chain by carefully taking the R + 00 limit in (22), (24) and ( 2 5 ) .  Then 
one finds that the trajectory in the presence of no nematic field is 

L 
cos S(S),,= - 1 + 2 k 2 s n 2 ( + - G ,  k) 4,,(s)=constant S E ( 0 ,  L )  (34) 

\,.r 

where 

L 
2nA. 

K ( k ) = -  (35) 
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To look at the stability of this solution we take the approach of [2] and examine the 
second order perturbations to the energy (6). If we perturb a solution to the equilibrium 
equations (7)  and (8) so that O , ( s ) + & , ( s ) + a ( s )  and d , o ( s ) - . & ( s ) + p ( s )  then the 
second order term in the energy is: 

&U2 =+ loL d s  E [ ( $)2+ (g)2 sin2 Bo+( %)2 cos 200a2+2 (%) (g) a sin 20,] 

+ tJoLdS3aS  C O S ~ ~ O ~ K ~ ~  COS 0,. (36) 

All the equilibrium solutions have d,,(s) =constant which considerably simplifies 
the problem. The 4 and 0 perturbations decouple and the d, perturbation is: 

which is always positive. Thus the mechanical equilibrium solutions are stable against 
any small perturbations in the 4 variable. The question of stability with respect to .9 
perturbations is more interesting. We take the eigen approach of [Z]. The eigenequation 
which needs to be solved (with free end boundary conditions) is: 

2 *  

E q = $ k ( K C O S e ( s ) - u ) .  d s  

If any of the eigenfunctions II, have U < 0 then the solution (34) will he unstable. Using 
(34) in (38) and specializing to the case of a single roller ( n  = 1) it is possible to guess 
the lowest two eigenfunctions and hence obtain their eigenvalues as: 

~ ( 1 -  k 2 )  (39) JI)=- 

and 

These are basically the same eigenfunctions as were found for a hairpin. From the 
fact that k Z <  1 it is clear that u")<O and thus rollers are unstable. The second 
eigenvalue and all higher eigenvalues are positive and there is thus only one mode of 
motion which is unstable. This unstable mode is however quasi-stable, for as L / h , +  1, 
k + 1 exponentially rapidly. 

To discover exactly what the unstable mode of motion entails we compare $I"' to 
db'/ds in the limit of large L/A,  (k - .  I ) .  We have 

(41) 

and 

-+sech (:r ---K(k) ) a s k - . l .  
ds  (42) 

Thus by the arguments of [2] the roller must move along its own length. This implies 
that rollers effectively 'roll' along a chain as shown in figure 12. In the absence of 
random forces a single roller on a chain will be driven by the exponentially weak 
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Figure 12. The dynamics of a single roller. T h e  roller merely rolls along the chain ( ( a )  to 
(e)) .  either by diffusion (in which case it  is just B I D  random walker) or in the IOW 
temperature limit by potential effects. Eventually it will reach the end of  the chain and 
unwind because o f  strong potential effects. 

potential towards the ends of the chain. In the presence of temperature effects a single 
roller will be able to diffuse freely along a chain. The diffusion of such a roller will 
however be different from the diffusion of ‘a hairpin. The major difference is in the 
mobility. For a roller to diffuse along a chain the only part of the chain that needs to 
move is the curved roller part. Thus we expect that the friction ‘matrix’ for a roller 
will be given by CpA. where [ = 1 and p is the friction constant per unit length. To 
show this more clearly we shall adopt a model for roller motion which is similar to 
the diffusing pulley model for hairpin motion. This is shown in figure 13. We neglect 
the extent of the roller perpendicular to the chain and work in the regime A.<< L so 
that the effect of the roller position upon the centre of the mass is minimal. There are 
two coordinates in this model-the centre of mass ,? and the position of the top of 
the roller sI. The x position of a monomer at arc length position s along the chain is 
modelled as: 

(43) 
Here y is a geometrical factor and we have approximated the shape of the roller by 
the cubic in s. Upon calculating the Rayleighian for this system, neglecting terms small 
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Figure 13. The simple model o i  roller dynamics. The roller behaves l ike  a bead on a slring. 
The only coordinates needed to describe il are the arc-length position s, and the centrc.of- 
mass o i  the chain 2. T i e  roiier is shown greatiy eniargea here for ciariiy. For [he moaei 
to be valid we require A,< L. 

in AJL and cross terms between S, and 2 (which arise as a result of not including the 
roller in the centre-of-mass calculation) we obtain the friction for the centre-of-mass 
motion as p L  and that for the sI motion as =PA.. Thus the roller motion only involves 

implications. Firstly the roller may be treated as  a freely diffusing particle with a simple 
diffusion constant which is independent of the position of the roller. Secondly, the 
timescale for a roller to be destroyed is of the order of pL2A,/k.T. There is an L2 from 
the fact that it has to d o  a random walk of length L, and a A,  factor from the friction. 
Thus for large chain lengths roller motion should be much faster than hairpin motion, 
the timescales for which are expected t o  increase as L’. 

The foregoing analysis of roller stability and dynamics was limited to an approach 
based on linearization of the energy. The only way in which a single roller could be 
destroyed (in the presence of no  other rollers) was to roll off the end of the chain. It 
is clear, however, that a single roller may be destroyed by rotating the defect T radians 
ahout an axis perpendicular to the main chain and in the plain of the loop as shown 
in figure 14. This produces a bump in the chain which can soon be destroyed. The 
importance of this method of roller destruction is that it involves only the motion of 
a small section of the chain of size =Ar .  The ‘equivalent’ motion in hairpins would 

a Crictiona! coeficien! proportions! !O A V  and not to !he size of the chain. This has two 

Figure 14. A possible destruction mode for a single roller. The roller in ( a )  Rips out of 
the page to create a bump ( b ) .  This bump then Raltens rapidly. 
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require moving a piece of chain of length = L / 2  and would hence involve a large 
energy penalty. The energy barrier which needs to be overcome for a roller to rotate 
into a bump is of the order of the roller energy and hence this method of roller 
destruction may be important, particularly at higher temperatures. By the principle of 
detailed balance the rotation of a hump into a roller provides a method of roller creation. 

We now discuss briefly the dynamics of more than one roller on a chain. Whilst 
the rollers are far apart their dynamics are just those for a single roller. To determine 
whether rollers attract or repel we can examine the energy of a system of rollers on a 
finite sized chain. Substituting (34) into ( 6 )  yields for the energy of the chain: 

Apart from the constant ground state energy this is of the same form as the energy 
for n hairpins on a nematic chain, and hence the energy of n rollers increase less 
rapidly than linearly in n. Thus rollers attract each other-although as in the hairpin 
case this attraction is exponentially weak at distances greater than A,. However when 
two rollers approach each other it is not always clear what happens. At small distances 
between rollers the fact the chain cannot cross itself needs to be taken into account. 
Two rollers with the correct original topology can annihilate each other by forming a 
double hairpin configuration which then rapidly flattens (see figure 15). However two 
rollers in  a different configuration can form a single twisted roller (figure 16) which 
cannot be destroyed unless it reaches the end of a chain or moves out of the plane. It 
is clear that in this case the 4 variable will be important. 

Figure 15. A passible annihilation process for two rollers. I f  the rollers have the topology 
shown in ( n ) ,  then without Ripping out of the plane of the paper they can attract each 
other to form the double hairpin configuration ( b l ,  which then decays to a straight line. 
The roughly equivalent points in the two configurations are marked by ( A )  and ( R I .  

Here we have considered rollers formed by chains of permanent dipoles. It is also 
possible that rollers could form in a strong Row field [3-51. In such a case the dynamics 
of rollers might well be different. I n  particular, in strong enough flows one expects the 
roller to be convected with the Row and in this case the diffusive motion considered 
here would be unimportant. 
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Figure 16. Anallernativetwo rollertopologytofigure I S .  Herethe two rollerr canannihilate 
by two single roller processes are in figure 14. Althernatively, if one aftempts a similar 
process 10 fhat of figure IS. a tight figure of eight configuration is formed ( h ) ,  which can 
only be destroyed by Ripping out of the plane of the paper and forming a bump, ( e ) .  

6. Conclusion 

In this paper we have presented a study of the types of defects which can occur in 
dipoled polymer chains, both with and without a nematic component. The main result 
is that there exists a new type of defect, a 'roller', which is a small thermal loop in 
the chain. On a finite sized dipoled chain there are also many other defects which are 
between hairpins and rollers. The number of mechanical equilibrium solutions for a 
dipoled nematic chain is thus very large. 

In the limit of zero nematic field and for the roller length much less than the chain 
length rollers exhibit properties which are very similar to hairpins. Indeed mathemati- 
cally the two solutions look very much alike. n rollers have the same energy form as 
n hairpins and any number of rollers on a chain are unstable as are hairpins. Rollers 
also attract each other. Dynamically rollers are very different from hairpins. I t  is true 
that they move by keeping their shape preserved, but in moving they diffuse very 
rapidly because only a piece of chain of length -A. needs to be moved. They thus 
have a destruction time for rolling of the end of the chain proportional to L', unlike 
the L' time for hairpin destruction. 

Many questions about rollers still need to be answered. One would like to know 
the relative thermodynamic importance of the various solutions discussed in section 
3. Although all of them are mechanical equilibrium solutions some are of high energy 
and are unlikely to be numerous in a thermal system. The various internal destruction 
modes of single and multiple rollers also need to be investigated. The model here is 
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also over simplified in that excluded volume effects are neglected. These are likely to 
be of some importance for small rollers. In general however, the fact that the chain 
cannot cross itself and does not lie exactly in a plane should not be important because 
the roller resists out of plane motions. In passing we also note that it is possible to 
envisage chains coupled to a P,(cos f l )  field. A whole range of exotic solutions to the 
equilibrium equations would then be produced. These could be easily analysed using 
the ghost particle analogy presented here. However, the creation of a P,(cos 8) chain 
may be difficult experimentally for n > 2. 
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